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Prandtl–Meyer flows with embedded oblique shock waves due to excessive heat release
from condensation (supercritical flows) are considered by extending the subcritical
asymptotic solution of Delale & Crighton (1998). The embedded shock origin is
located by the construction of the envelope of the family of characteristics emanating
either from the corner or from the deflected wall in the parabolic approximation. A
shock fitting technique for embedded oblique shock waves is introduced in the small
deflection angle approximation and the law of deflection of a streamline through
an embedded oblique shock wave is established within the same approximation. The
network of characteristics downstream of the embedded shock front is constructed and
the solution for the flow field therein is evaluated by utilizing the asymptotic solution
of the rate equation along streamlines downstream of the shock front together with
the equations of motion in characteristic form. Results obtained by employing the
classical nucleation equation and the Hertz–Knudsen droplet growth law, compared
with the supercritical experiments of Smith (1971) for moist air expansions, show that
supercritical Prandtl–Meyer flows can only be realized locally when the embedded
shock lies sufficiently far downstream of the throat, where the corner is located.

1. Introduction
Prandtl–Meyer flows with homogeneous condensation are of considerable interest

in the physical sciences and in technology. They have direct applications at the
trailing edge of the blades in steam turbines and can affect the downstream wake
structure. The subject has been investigated both experimentally and theoretically by
Smith (1971), Kurshakov, Saltanov & Tkalenko (1971) and Frank (1979, 1985). An
asymptotic solution of the problem for subcritical flows (flows without embedded
shock waves) was recently given in Part 1 (Delale & Crighton 1998 and references
therein). Results obtained for Smith’s experiments by this asymptotic solution showed
intersecting characteristics in the heat addition zones, clearly exhibiting the need to
incorporate embedded shock waves due to excessive heat release from condensation
(supercritical flows). A qualitative theory recently developed by Delale & van Dongen
(1998) show that such shock waves are weak. Supercritical Prandtl–Meyer flows
have never been calculated, mainly due to the lack of a shock fitting technique for
embedded weak oblique shock waves in non-uniform flows. The computation of the
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near-corner solution, where intense heat release to the flow occurs, presents another
major difficulty. This investigation is devoted to the resolution of these difficulties.

In this investigation a method of computation of supercritical Prandtl–Meyer
flows with embedded weak oblique shock waves, due to intense heat release from
condensation, is presented. Shock formation theory is discussed and the embedded
shock origin is located by the envelope of the family of intersecting characteristics
in the parabolic approximation. A shock fitting technique for embedded oblique
shock waves is introduced in the small deflection angle approximation. Consequently,
the law of deflection of a streamline through an embedded oblique shock wave is
established in this approximation. The network of characteristics downstream of the
shock is constructed and the flow field therein is evaluated using the asymptotic
solution of the condensation rate equation along streamlines in different regimes
downstream of the shock front. A supercritical algorithm for such a flow field is
developed incorporating the embedded oblique shock relations and is applied to the
experiments of Smith (1971). The results show that Prandtl–Meyer flows can only
be realized with an embedded oblique shock wave downstream of the nozzle throat
where the corner is located. Embedded shock waves near the throat show strong
shock behaviour with subsonic flow field behind (e.g. see also Frank 1985), similar to
those observed in ducts and nozzles, and cannot be calculated by the theory developed
here for supercritical Prandtl–Meyer flows.

2. Equations of motion and asymptotic solution of the condensation rate
equation for supercritical flows

We consider the steady two-dimensional equations of motion of a mixture of a
condensable vapour and a carrier gas in natural coordinates and normalized form:
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where s and n are the normalized streamwise and normal coordinates, ρ, p, u and T
are, respectively, the normalized mixture density, pressure, flow speed and temperature,
θ is the flow angle, g is the condensate mass fraction; and h is the normalized mixture
enthalpy given by

h = cpm T − µm

µv
gL(T ), (6)

with cpm denoting the normalized mixture specific heat at constant pressure, L the
latent heat of condensation and µm and µv , respectively, the molecular weights of the
mixture and of the condensable vapour. (For normalization and other details, see
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Part 1. Note that in equations (20) and (39) of Part 1, the missing factor µm/µv , that
multiplies the term g L, should be included.)

The flow and state equations (1)–(6) should be supplemented by the condensation
rate equation

g(s) =

∫ s

sc

[r∗(ξ) + λ

∫ s

ξ

Ω(η) dη]3 Σ(ξ)

ρ(ξ) u(ξ)
exp [−K−1B(ξ)] dξ (7)

along streamlines constructed from a normalized nucleation equation

J = Σ(p, T , g) exp [−K−1B(p, T , g)] (8)

and a normalized radius-independent droplet growth law

∂r

∂s
= λΩ(p, T , g), (9)

with details given in Part 1. In (7)–(9) B,Ω and Σ, respectively, denote the normalized
activation function, the normalized droplet growth function and the pre-exponential
factor of nucleation, K is the nucleation parameter (assumed to be small compared
to unity), λ is the droplet growth parameter and r∗ is the normalized critical radius
beyond which condensation nuclei grow into droplets.

A continuous solution of (1)–(9) for Prandtl–Meyer flows is given in Part 1, using
the asymptotic solution of the condensation rate equation (7) along streamlines.
This solution is valid only if the characteristics or Mach lines emanating from the
corner or the deflected wall do not intersect in the heat addition zones. When these
characteristics intersect, which seems to be typical for most condensing Prandtl–
Meyer flows that can be experimentally realized, embedded oblique shock waves
appear to redirect the flow diverted by excessive heat release from condensation.
Such flows will be called supercritical in contrast to subcritical flows where the flow
field is everywhere continuous in the domain of interest. Figure 1 shows a typical
supercritical flow with an embedded shock front KL due to excessive heat release
by condensation. It has been demonstrated by Delale & van Dongen (1998) that
such a shock wave shows a supersonic to supersonic transition and can, therefore, be
assumed to be weak (strong shock waves with supersonic to subsonic transition occur
in supercritical flows in ducts and nozzles, e.g. see Schnerr (1989) and Delale, Schnerr
& Zierep (1993a, b)). The existence of an embedded shock KL, with a portion KG
lying in the heat addition zones and with a portion GL lying in the nearly frozen
zones, distinguishes the different classes of streamlines, designated a to e in figure 1,
which have distinct condensation zones according to the variation of the normalized
activation function B along them. Figure 2(a–e) classifies the possible variations of B
along streamlines for these classes. Figure 2(a) shows the condensation zones along a
typical streamline of class a in figure 1, as encountered in subcritical Prandtl–Meyer
flows. In this case the condensation zones (initial growth zone IGZ, further growth
zone FGZ, rapid growth zone RGZ, onset zone OZ, nucleation zone with growth
NZ and droplet growth zone DGZ) are precisely the same as those given in Part 1.
Figure 2(b–e), on the other hand, shows the condensation zones and variation of B
along streamlines of those classes which pass through the embedded shock wave KL.
In particular figures 2(b) and 2(c) show the condensation zones along streamlines b
and c in figure 1, which pass through the portion KG of the embedded shock in
the heat addition zones whereas figures 2(d) and 2(e) show the condensation zones
along streamlines d and e in figure 1, which pass through the portion GL of the
embedded shock in the nearly frozen zones. The embedded shock location sz along
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Figure 1. Different classes of streamlines in Prandtl–Meyer flows with an embedded oblique shock
wave KGL (OT and OH are, respectively, the isentropic tail and head of the expansion fan and
OGF is the subcritical nucleation wave front). a, A typical streamline which does not intersect the
shock front, therefore along which the flow field remains subcritical; b, a typical streamline which
intersects the shock front in the droplet growth zone (DGZ); c, a typical streamline which intersects
the shock front in the nucleation zone with growth (NZ); d, a typical streamline which intersects
the shock front in the rapid growth zone (RGZ); and e, a typical streamline which intersects the
shock front in the further growth zone (FGZ).

each streamline b–e in figure 1, lies, respectively, in the droplet growth zone DGZ,
in the nucleation zone with growth NZ, in the rapid growth zone RGZ and in
the further growth zone FGZ. The onset zone OZ, in which the observed onset of
condensation falls, precedes the embedded shock location sz in each case, as seen in
figure 2(b–e).

The condensation rate equation (7) and its asymptotic solution presented in Part
1 remain valid only on streamlines a, which are typical for subcritical flows. For
supercritical flows, which are observed on streamlines b–e of figure 1, the condensation
rate equation and its asymptotic solution have to be reconsidered in each case. In
reformulating the condensation rate equation along streamlines, the thermodynamic
functions r∗, B, Σ and Ω of Part 1 (see also (7)) are taken to be piecewise smooth
functions of the three independent thermodynamic coordinates p, T and g. Across the
embedded oblique shock, the pressure p and temperature T are discontinuous in spite
of the fact that the jumps in these variables may turn out to be small. Consequently,
the thermodynamic functions r∗, B, Σ, Ω and L exhibit discontinuities at the embedded
shock location sz along streamlines. We use an overbar to denote the thermodynamic
functions in domain s > sz along streamlines to distinguish them from those in
domain s < sz . We denote by subscript a all thermodynamic functions as s → s−z
and by subscript b all thermodynamic functions as s → s+z (e.g. Ba = lims→s−z B(s)

and Bb = lims→s+z B̄(s); also note that Ba 6= Bb) along streamlines. The condensation
rate equation (7) remains valid along streamlines b–e of figure 1 for s 6 sz only. For
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Figure 2. The variation of the normalized activation function B versus s along streamlines of
different classes (IGZ is the initial growth zone, FGZ is the further growth zone, RGZ is the rapid
growth zone, OZ is the onset zone, NZ is the nucleation zone with growth, DGZ is the droplet
growth zone, s is the streamwise coordinate, sz is the location of the shock front on the streamline,
and s` is the location of the turning point of B in subcritical flows): (a) in subcritical flows, (b) sz
lies in DGZ, (c) sz lies in NZ, (d) sz lies in RGZ, and (e) sz lies in FGZ.

s > sz , the condensation rate equation can be written as

g(s) =

∫ sz

sc

[
r∗(ξ) + λ

∫ sz

ξ

Ω(η) dη + λ

∫ s

sz

Ω̄(η) dη

]3
Σ(ξ)

ρ(ξ) u(ξ)
exp [−K−1B(ξ)]dξ

+

∫ s

sz

[
r̄∗(ξ) + λ

∫ s

ξ

Ω̄(η) dη

]3
Σ̄(ξ)

ρ̄(ξ) ū(ξ)
exp [−K−1 B̄(ξ)] dξ. (10)

In (10) the first integral characterizes the contribution from nuclei created upstream
of the shock location whereas the second integral characterizes the contribution from
nuclei produced downstream of the shock location. It can readily be observed from (7)
and (10) that the condensate mass fraction g is continuous at s = sz along streamlines;
however, its derivative is discontinuous at the shock location. Differentiating (7) and
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(10) with respect to s along streamlines, we have for s < sz
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Now by taking the limits s → s−z in (11) and s → s+z in (12), we obtain the shock
condition for ∂g/∂s as(

∂g

∂s

)
b

=
Ωb
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(
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)
a

+ r∗3b
Σb

ρb ub
exp [−K−1 Bb]− Ωb
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exp [−K−1 Ba] (13)

along streamlines c–e of figure 1. For typical streamlines of class b in figure 1 where
Ba = Bb →∞, (13) reduces to (

∂g

∂s

)
b

=
Ωb

Ωa

(
∂g

∂s

)
a

. (14)

The asymptotic solutions of the condensation rate equation (7) and of its derivative,
(11), of Part 1 remain valid along streamlines intersecting the shock front only in
regions which lie upstream of it. The asymptotic solution of the rate equation along
streamlines b–e in figure 1 downstream of the oblique shock location can be obtained
from those given in Appendices A–D of Delale et al. (1993b) for supercritical nozzle
flows. We use for the class b streamline of figure 1 the asymptotic solution downstream
of the shock in regime IV in Appendix D, and for classes c, d and e, respectively,
the corresponding solutions of regimes III, II and I given in Appendices C, B and A
of Delale et al. (1993b) with the following modifications. The nozzle axial coordinate
x should be replaced by the streamwise coordinate s, the normal shock location
z along the nozzle axis should be replaced by the oblique shock location sz along
streamlines, the derivatives d/dx and d2/dx2 along the nozzle axis should be replaced,
respectively, by d/ds and d2/ds2 along streamlines, subscripts − and + should be
replaced, respectively, by subscripts a and b, the function Ω2 should be replaced by
the function Ω̄, and, finally, the normal area Az in supercritical nozzle flows should be
replaced by 1/(ρa ua) for quantities evaluated just upstream of the oblique shock front
and by 1/(ρb ub) for quantities evaluated just downstream of the oblique shock front.
Since these expressions for the supercritical asymptotic solution of the condensation
rate equation along streamlines downstream of the oblique shock are lengthy and
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Figure 3. Position of the subcritical nucleation wave front IF with respect to the tail O′H of the
expansion fan, centred at C and obtained by connecting two plane walls, deflected by an angle θ2,
by a circular arc OO′ with radius R and centre at CR .

complicated, we do not present them here, but refer the reader to Delale et al. (1993b)
with the modifications mentioned above.

3. Formation of embedded shock waves by homogeneous condensation
The heat release from condensation causes compressive effects along streamlines

in the expansion fan of corner expansion flows resulting in the characteristics or
Mach lines emanating from the corner and/or from the deflected wall approaching
one another. As the heat release in the heat addition zones exceeds a critical value,
these characteristics intersect, ruling out the possibility of a continuous solution. An
embedded frozen oblique shock wave (curve KL in figure 1) then appears to redirect
a flow diverted by excessive heat release. The computation of such flows (supercritical
flows) requires a precise determination of the embedded shock origin K and the
location of the embedded shock front KL of figure 1. In this section we determine the
embedded shock origin K by the envelope construction of different possible families of
intersecting characteristics. For this reason we search for possible flow patterns which
exhibit different families of intersecting characteristics for corner expansion flows with
embedded shock waves due to condensation. We consider two plane walls, with an
angle θ2 in between, connected by a circular arc OO′ with a normalized radius R and
with centre at CR , as shown in figure 3. In this case the centre C of the expansion fan
and CR of the arc OO′ are distinct points. The position of the subcritical nucleation
wave front IF with respect to the expansion fan is also shown in figure 3. For corner
expansion flows we let R → 0 (the points O, O′, I, C and CR then all coincide at the
corner), and we obtain the possible families of characteristics, as shown in figure 4.
As mentioned earlier these families of characteristics emanate either from the corner
or from the deflected wall. In what follows we discuss shock formation theory by
constructing the envelopes of the families of intersecting characteristics for each of
the possibilities shown in figure 4.

3.1. Equations of characteristics in the heat addition zones and existence of embedded
shock waves

We discuss the parametrization of the characteristic equations in the heat addition
zones using figure 4. Using inviscid theory (neglecting boundary layers, wakes, etc.),
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Figure 4. Classification of characteristics emanating either from the corner O or from the deflected
wall OI′ in the physical plane. OT and OH are, respectively, the isentropic tail and head of
the expansion fan, OF denotes the subcritical nucleation wave front, and 1 and 2 show typical
characteristics of the same family, but with different parametrization, emanating either from the
corner or from the deflected wall.

the solid wall is assumed to represent an isentropic streamline with a geometric
singularity at the corner O. The point I, where the nucleation wave front meets the
corner, is also a singular point. Thus, the geometric singularity O (the corner) and
the physical singularity I coincide. Moreover, since heat release is always delayed
with respect to nucleation, the nucleation wave front IF should meet the corner
O at the slope of the isentropic wave head mH . With this in mind, we discuss the
parametrization of the characteristics in figure 4. Here, we can distinguish two types
of characteristics, designated 1 and 2 in the heat addition zones. The characteristics
of type 1 emanate from the corner O and are curved due to heat addition as they
cross the nucleation wave front IF. We let m denote the initial slope of a characteristic
line emanating from the corner and write the parametric equations of the nucleation
wave front as

x` = x`(m) and y` = y`(m) (15)

for mH 6 m 6 mT where mT and mH are, respectively, the initial slopes of the
isentropic wave tail and of the isentropic wave head. In this case the characteristics
of type 1 emanating from the corner remain straight up to the nucleation wave front
IF and are given by

y = mx (16)

for 0 6 x 6 x`(m) and mH 6 m 6 mT . As the characteristics of type 1 of figure 4
traverse the nucleation wave front and enter the heat addition zones, they are curved
due to substantial heat addition by condensation. In the first approximation these
characteristics can be assumed to take the parabolic form

y = A(m)[x− x`(m)]2 + mx (17)

for x > x`(m) and mH 6 m 6 mT where the function A(m) can be thought of as
a measure of the curvature of a characteristic line with initial slope m in the heat
addition zones. In particular, as A(m)→ 0 (negligible heat addition), the characteristics
given by (17) become straight, as in the case of isentropic flow. It can be shown that
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the characteristics given by (17) intersect in the heat addition zones provided that[
2A(m)

dx`
dm
− 1

]2

− 4
dA

dm
x`(m) > 0. (18)

Equation (18) can, thus, be taken as the necessary and sufficient condition for the
existence of embedded shock waves due to intersecting characteristics of type 1 in
figure 4. We now discuss the characteristic family of type 2 shown in figure 4. These
characteristics emanate from the deflected wall and, in the parabolic approximation,
can be parametrized by

y = Â(ξ) (x− ξ)2 + mH (x− ξ)− (tan θ2) ξ (19)

where ξ > 0 denotes the initial abcissa of the emerging characteristic and where
the function Â(ξ) is to be determined from the subcritical solution of Part 1 in the
heat addition zones. In particular, we have Â(0) = A(mH ). The condition for the
intersection of these characteristics becomes

[Â(ξ)]2 +
dÂ

dξ
(mH + tan θ2) > 0. (20)

3.2. Envelope construction and location of the embedded shock origin

The parametric equations of the envelope of the family of intersecting characteristics
in the heat addition zones of figure 4, discussed in the previous section in the parabolic
approximation, are given by

∂y

∂m
= 0⇒ x = x̄(m) (21)

where y is given by (17) and

y = ȳ(m) = A(m)[x̄(m)− x`(m)]2 + m x̄(m) (22)

for characteristics of type 1, and

∂y

∂ξ
= 0⇒ x = x̂(ξ) (23)

where y is given by (19) and

y = ŷ(ξ) = Â(ξ)[x̂(ξ)− ξ]2 + mH [x̂(ξ)− ξ]− (tan θ2)ξ (24)

for characteristics of type 2 in figure 4. In particular, the functions x̄(m) and x̂(ξ) are
given by

x̄(m) =


x`(m) +

2A(m)dx`/dm− 1±√∆(m)

2(dA/dm)
if

dA

dm
6= 0

x`(m) +
x`(m)

2A(m)dx`/dm− 1
if

dA

dm
= 0

(25)

for mH 6 m < mT and

x̂(ξ) =


ξ +

Â(ξ)±
√

∆̂(ξ)

dÂ/dξ
if

dÂ

dξ
6= 0

ξ − (mH + tan θ2)

2Â(ξ)
if

dÂ

dξ
= 0

(26)
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for ξ > 0 with

∆(m) =

[
2A(m)

dx`
dm
− 1

]2

− 4
dA

dm
x`(m) > 0 (27)

and

∆̂(ξ) =
[
Â(ξ)

]2

+
dÂ

dξ
(mH + tan θ2) > 0. (28)

The positive definiteness of the functions ∆(m) and ∆̂(ξ) follows from the conditions
of intersecting characteristics given, respectively, by (18) and (20). The origin K of
the embedded shock wave, in principle, can lie on the envelope of the family of
characteristics of type 1 or 2 of figure 4. In either case the origin K is identified as
the point where the discriminant of the quadratic equation for the coordinates of the
envelope of each family vanishes. For the envelope of the intersecting characteristics
of type 1 in figure 4, it follows from (21) that the embedded shock origin lies on a
characteristic emerging from the corner with slope mK given by the condition

∆(mK) = 0 (29)

where ∆(m) is given by (27). In this case the coordinates of the embedded shock origin
K are given by

xK = x`(mK) +

(
2A(mK) (dx`/dm)K − 1

)
2 (dA/dm)K

(30)

and

yK = A(mK)[xK − x`(mK)]2 + mK xK (31)

where subscript K in the derivatives with respect to m denotes evaluation at m = mK .
On the other hand, if the embedded shock origin K lies on the envelope of intersecting
characteristics emerging from the deflected wall, the initial x-coordinate ξK of the
characteristic on which K lies can be obtained from the condition

∆̂(ξK) = 0 (32)

where ∆̂(ξ) is given by (28). In this case the coordinates of the embedded shock origin
K are

x̂K = ξK +
Â(ξK)

(dÂ/dξ)K
(33)

and

ŷK = Â(ξK)

[
Â(ξK)

(dÂ/dξ)K

]2

+ mH
Â(ξK)

(dÂ/dξ)K
− (tan θ2) ξK. (34)

It is now clear that the embedded shock origin K either lies on a characteristic
emanating from the corner O with coordinates given by (30) and (31), or on a
characteristic emanating from the deflected wall with coordinates given by (33) and
(34). In the latter case the heat addition to the flow would be less than that of the
former case.

For completeness, we would also like to mention the case of shock formation
due to condensation for the expansion into vacuum as shown in figure 5. In this
case only characteristics emanating from the corner, labelled 1 in figure 5, can be
distinguished. Shock formation theory then follows the same lines of analysis as for
the characteristics of type 1 of figure 4 treated above in detail.
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Figure 5. Classification of characteristics for the case of expansion into vacuum (OT and OH are,
respectively, the isentropic tail and head of the expansion fan, OEF is the subcritical nucleation
wave front, and 1 shows a typical characteristic of the family emanating from the corner O).
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Figure 6. Geometry of an oblique shock wave (subscripts a and b denote, respectively, variables
just ahead of and behind the shock front, subscripts ν and τ denote, respectively, the normal and
tangential components with respect to the shock front, β is the shock angle and ε is the angle of
deflection of a streamline by the oblique shock).

3.3. A model for the near-corner solution

The above considerations for shock formation by homogeneous condensation require
the determination of the nucleation wave front x`(m) and of the heat functions A(m)
and Â(ξ) from the subcritical asymptotic solution of Part 1. Since heat addition to
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the flow intensifies as the corner is approached due to high expansion rates, the
near-corner subcritical asymptotic solution plays a dominant role in determining
the heat functions and the nucleation wave front. It is important to mention that
the expansion rate dT/ds → −∞ at the corner. Thus, the question of the validity
of the subcritical asymptotic solution of Part 1 in the immediate neighbourhood
of the corner arises. Indeed, for extremely high expansion rates, the distinct con-
densation zones along streamlines approach each other so rapidly that it is not
possible to evaluate the asymptotic expressions near and beyond the nucleation
wave front. Moreover, as the corner is approached, boundary layer, flow separa-
tion and heat transfer effects have to be considered. The physical mechanisms of
condensation, i.e. nucleation and droplet growth theories, need to be revisited as
well. For example, the very high expansion rates near the corner suggest that un-
steady effects of nucleation have to be considered (see Delale & Schnerr 1996). In
summary, the physical model employed needs to be modified to include the vari-
ous complex phenomena mentioned above. Even if such a task could be fulfilled,
giving a very complicated model, it would be very improbable that a satisfactory
solution to the problem could be obtained by any means. In this paper we will
approach the corner along streamlines as long as the subcritical asymptotic algo-
rithm of Part 1 remains valid, without the complex phenomena mentioned above.
We will then extrapolate the heat function and the subcritical nucleation wave front
to regions near the corner. In doing so, we recommend polynomial extrapolation
for the function x`(m), obtained in regions near the corner where the subcritical
asymptotic algorithm of Part 1 applies. For the extrapolation of the heat function,
one has to first choose one of the cases discussed for shock formation. Let us as-
sume that the embedded shock origin lies on a characteristic of the family given by
(16) and (17) where the heat function A(m) is to be determined. We first note that
A(m) > 0 for mH 6 m 6 mT since the characteristics are concave upward in the
heat addition zones. As m→ mT , we have isentropic flow; therefore, A(m)→ 0. Also,
as m → mH , for sufficiently large distances away from the wall, we have complete
relaxation to equilibrium flow with negligible latent heat addition along streamlines
so that A(m) → 0 again. Since A(m) is presumably continuous in [mH,mT ] and dif-
ferentiable in (mH,mT ), it follows by Rolle’s theorem that dA/dm = 0 for some m̄
in (mH,mT ). Since A(m) > 0, the heat function A(m) exhibits a local maximum at
m = m̄. Moreover, near the corner, heat addition to the flow occurs in a more or
less symmetric fashion along streamlines. Finally, as the corner is approached, the
heat function A(m) steepens with decreasing bandwidth. All of the above properties
of the heat function can be taken into account by assuming a Gaussian distribution
in the form

A(m) =
1√
2 πσ

exp

[
− (m− m̄)2

2 σ2

]
(35)

with m̄ denoting the mean and σ denoting the standard deviation. This function has
inflection points at m0 = m̄ ± σ. Thus, from the data to be found by the subcritical
algorithm, one can find the best fit by least squares (it would be easier to guess
either of m0 or m̄ from the data and perform a one-parameter fit instead of two).
Then, one can find mK from (29). The coordinates of the embedded shock origin
follow from (30) and (31). If such a value of mK cannot be found, one proceeds
to evaluate Â(ξ) in a similar fashion by a Gaussian fit and use (32) to evaluate
ξK . The coordinates of the embedded shock origin can then be evaluated from (33)
and (34).
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4. Oblique shock relations for condensing flows
The oblique shock relations for condensing flows have already been discussed in

detail by Clarke & Delale (1988). Here, we present these relations and their solution.
We let subscripts a and b denote, respectively, the quantities just ahead of and behind
the oblique shock wave as shown in figure 6. We also let subscript ν denote the
component normal to the shock front and subscript τ denote the component tangent
to the shock front. If β is the shock angle, defined as the angle between ua and
the shock front, a deviation in the flow direction, by angle ε, occurs. Consequently,
the angle α between ub and the shock front will be α = β − ε (see figure 6). The
conservation of mass, momentum and energy together with the thermal equation of
state across the shock surface yield

ρa uaν = ρb ubν , (36)

pa + ρa u
2
aν = pb + ρb u

2
bν , (37)

uaτ = ubτ, (38)

cpm Ta + 1
2
u2
a − µm

µv
L(Ta) g

∗ = cpm Tb + 1
2
u2
b − µm

µv
L(Tb) g

∗ (39)

and
pa

ρa Ta
=

pb

ρb Tb
= 1− µm

µv
g∗, (40)

where g∗ is the frozen value of the condensate mass fraction at the shock front. We
now, for convenience, define a Mach number by

M =
u

(γ T )1/2
(41)

where γ is the adiabatic exponent of the mixture defined by γ ≡ cpm/(cpm − 1). This
Mach number can be related to the flow Mach number Mg , based on the local frozen
speed of sound af , by

M2
g ≡ u2

a2
f

= M2 (cpm − 1 + µm/µv g)

(cpm − 1) (1− µm/µv g)
. (42)

For values of the condensate mass fraction g � 1, as encountered for moist air
expansions, we have M ≈Mg . Equations (36)–(41) yield the relations

M2
bν =

[
F(M2

aν)

2 (γ − 1)
− γ

(
1− µm

µv
g∗
)

±
{[

F(M2
aν)

2 (γ − 1)

]2

− (1− µm

µv
g∗)

[
γ

(γ − 1)
− 1

2

(
1− µm

µv
g∗
)]

F(M2
aν)

}1/2 ]

×
[
γ2 − F(M2

aν)

2

]−1

(43)

where

F(M2
aν) =

(1− µm/µv g∗ + γM2
aν)

[1/(γ − 1)− (µm/µv) ∆Lg∗/(γ Ta)]M2
aν + 1

2
M4

aν

(44)

with

M2
aν = M2

a sin2 β, (45)
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M2
bν = M2

b sin2 α (46)

and

∆L = L(Ta)− L(Tb). (47)

The rest of the oblique shock relations for condensing flows can be written

ρb

ρa
=

(1− µm/µv g∗ + γM2
bν)M

2
aν

(1− µm/µv g∗ + γM2
aν)M

2
bν

, (48)

pb

pa
=

(1− µm/µv g∗ + γM2
aν)

(1− µm/µv g∗ + γM2
bν)
, (49)

Tb

Ta
=

(1− µm/µv g∗ + γM2
aν)

2 M2
bν

(1− µm/µv g∗ + γM2
bν)

2 M2
aν

, (50)

α = tan−1

[
(1− µm/µv g∗ + γM2

aν) M
2
bν

(1− µm/µv g∗ + γM2
bν) M

2
aν

tan β

]
(51)

and

ε = β − α. (52)

It can further be shown that in the absence of condensation (g∗ = 0), the relation
between M2

bν and M2
aν , given by (43), yields the continuous solution Maν = Mbν if the

(−) sign in front of the square root is chosen. Equation (43) reduces to the classical
relation

M2
bν =

2 + (γ − 1)M2
aν

2 γM2
aν − (γ − 1)

(53)

if the (+) sign in front of the square root is chosen. On the other hand, when β = 90◦,
the oblique shock relations (43)–(52) reduce precisely to the normal shock relations
for condensing flows.

Equations (43)–(52) permit implicit calculation of the flow variables behind the
shock in terms of those ahead of the shock provided that one condition of the shock
(usually chosen as the shock angle β) and the frozen condensate mass fraction g∗ at
the shock location are known. This will be achieved in the next section by introducing
a novel shock fitting technique for embedded oblique shock waves. The solution given
above by (43)–(52) is implicit since the latent heat L depends on temperature. When
∆L = 0, the solution given by (43) with the (−) sign chosen will correspond to the
continuous solution, whereas the (+) sign will yield an explicit discontinuous solution
relating M2

bν to M2
aν . In this case the flow variables behind the shock can be written

explicitly in terms of those ahead of the shock provided that the shock is properly
located. When ∆L 6= 0, both signs may yield discontinuous solutions which should
be obtained by iteration starting with the condition ∆L = 0. In general, embedded
oblique shock waves encountered in condensing Prandtl–Meyer flows are weak so
that the solution with ∆L ≈ 0 suffices for all practical purposes.

5. Shock fitting for embedded oblique shock waves
The oblique shock relations of the previous section need to be supplemented

by a shock fitting technique which determines the shock location in the physical
plane. In this section we introduce a shock fitting technique by satisfying the global
conservation of mass across the shock for each streamtube of arbitrarily small cross-
sectional area (this idea can also be found in Clarke & Delale 1988). Let S1 and S2 be
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two streamlines of arbitrarily small normal separation intersecting the shock front,
respectively, at points 1 and 2 as shown in figure 7. Across the oblique shock, the
normalized oblique area, denoted by Aobl is continuous, but the normal area entering
the continuity equation,

ρ uA = constant (54)

along streamlines, is discontinuous. Using global conservation of mass for the stream-
tube formed by streamlines S1 and S2 of figure 7, we have

ρ1a u1a A1a = ρ1b u1b A1b (55)

where, as usual, subscripts a and b denote, respectively, the flow properties just ahead
and behind the shock front. In (55), A1a is the normal area at point 1a (shown by
the line 1–4 in figure 7) and A1b is the normal area of the streamtube formed by
the deflected streamlines passing through points 1b and 2b at the shock front and
continued analytically upstream as if there were no shocks. From the geometry of
figure 7, we have the relations

A3 = Aobl sin α (56)

and

A1a = Aobl sin (β + ∆β) (57)

where A3 (shown by the line 2b–3 in figure 7) is the normal area at point 3 of the
streamtube, formed by the deflected streamlines passing through points 1b and 2b, so
that we have

sin (β + ∆β)

sin α
=
A1a

A3

(58)

where β is the shock angle at point 1 and β + ∆β is the shock angle at point 2. On
the other hand, it follows from the area–direction relation

1

A

∂A

∂s
= −∂θ

∂n
(59)

that

A3 = A1b

[
1−

(
∂θ

∂n

)
1b

∆s+ O
(
(∆s)2

)]
(60)

along the streamline downstream of the shock passing through point 1 with ∆s
denoting the projection of the shock front 1–2 onto the deflected streamline through
point 1. Using the oblique shock relation (36) at point 1 together with (55), (58) and
(60), we obtain

(cot β) ∆β =

(
∂θ

∂n

)
1b

∆s (61)

to linear approximations in ∆β and ∆s. In the continuous or no-shock limit (ε→ 0),
(61) reduces to

(cot µ) δµ =

(
∂θ

∂n

)
1a

∆s (62)

where µ + δµ is the Mach angle at point 2′ in figure 7. The point 2′ lies on the
Mach line passing through point 1 and continued downstream of the shock without
deflection, and the projection of the portion 1–2′ of this Mach line on the undeflected
streamline through point 1 downstream of the shock is ∆s. Let us consider the
streamline passing through point 2′ in the continuous or no-shock limit (ε→ 0), and
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let 2′′ be the point on this streamline at the shock location where the continuous
Mach angle is µ+ δµ′′. Now the difference in Mach angles between points 2′ and 2′′
in figure 7, in the linear approximation, yields

δµ′′ − δµ =

(
∂µ

∂s

)
2′′
δs (63)

where δs is the length of the portion of the streamline between points 2′ and 2′′.
Similarly, the difference in Mach angles between points 2 and 2′′, in the linear
approximation, can be written as

∆µ− δµ′′ =

(
∂µ

∂χ

)
2

δχ (64)

where µ + ∆µ is the Mach angle at point 2 ahead of the shock and χ is the arcwise
parameter characterizing the shock front with δχ being the distance between points
2 and 2′′. Consequently, we have

∆µ = δµ+

(
∂µ

∂s

)
2′′
δs+

(
∂µ

∂χ

)
2

δχ (65)

in the linear approximation. It can easily be shown that as ε→ 0, we have δs→ 0 and
δχ → 0 with ∆s 6= 0. For most of the embedded oblique shock waves, the angle of
deflection ε of streamlines at the shock front is small compared to the shock angle β
or Mach angle µ. For such shock waves both δs/∆s and δχ/∆s are of O(ε) or less and
thus can be neglected with respect to unity (the small deflection angle approximation).
Therefore, (62) can be written as

(cot µ) ∆µ =

(
∂θ

∂n

)
1a

∆s (66)

in the small deflection angle approximation. In this approximation it follows from
(61) and (66) in the limit as ∆µ→ 0 that

dζ

dη
=

(
∂θ/∂n

)
b(

∂θ/∂n
)
a

(67)

provided that (∂θ/∂n)a 6= 0 (or equivalently ∆µ 6= 0) at any point on the shock front
where ζ and η are defined by

ζ = ln (sin β) (68)

and

η = ln (sin µ). (69)

It is essential to mention that the right-hand side of (67) would not only depend
on the flow properties at a ahead of the shock and at b behind the shock, but also
on β and dβ/dµ (consequently, on η, ζ and dζ/dη) as well as on g∗. On the other
hand, the flow properties at b behind the shock can be related to those ahead of the
shock at a, to µ and β (thus to η and ζ) and to g∗ using the oblique shock relations
(43)–(52). Since g∗ � 1 and varies insignificantly along the shock, the dependence of
the right-hand side of (67) on g∗ can be ignored. Consequently, the right-hand side
of (67) can be taken as a function of η, ζ and dζ/dη yielding a first-order ordinary
differential equation for the parametric representation of ζ by η (or of the shock
angle β by the Mach angle µ). It should also be mentioned that such a parametric
representation fails if the flow just ahead of the shock is uniform (in such a case
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parametric representation of the shock front has to be made by variables behind
the shock). At the embedded shock origin, we have βK = µK and (dβ/dµ)K = 1.
It then follows from the definitions (68) and (69) that ζK = ηK and (dζ/dη)K = 1.
Furthermore, at point K, we have (∂θ/∂n)a = (∂θ/∂n)b so that, assuming that an
analytical solution to (67) exists, we can approximate the right-hand side of (67)
along the shock front KL of figure 1 by(

∂θ/∂n
)
b(

∂θ/∂n
)
a

= 1 + 2C (η − ηK) (70)

for η > ηK where C is constant to be determined. In (70) we have assumed that
η−ηK = lnMK/Mg � 1, where Mg is the flow Mach number and MK its value at the
embedded shock origin. This assumption corresponds to slowly varying flow Mach
numbers along the shock front, which seems to be justified in the small deflection
angle approximation and which is typical of most practical flow situations. Using the
initial condition ζK = ηK , (67)–(70) then yield the relation

sin β = (sin µ) exp

[
C

(
ln

sin µ

sin µK

)2
]

(71)

for µ > µK . Since β > µ, it follows from (71) that C > 0. It is important to mention
that the function β = β (µ) is of class C1, but not of class C2 (see figure 8); therefore,
the point K is a singularity where the function β (µ) and its first derivative dβ/dµ
are continuous, but not its second derivative d2β/dµ2. In fact the second derivative
d2β/dµ2 at point K exhibits a discontinuity with a finite value defined by(

d2β

dµ2

)+

K

≡ lim
µ→µ+

K

d2β

dµ2
> 0 (72)

as µ → µ+
K and a vanishing value as µ → µ−K (see figure 8). The constant C in (71)

can thus be related to this discontinuity by the relation

C =
tan µK

2

(
d2β

dµ2

)+

K

(73)

so that (71) becomes

sin β = (sin µ) exp

[
tan µK

2

(
d2β

dµ2

)+

K

(
ln

sin µ

sin µK

)2
]

(74)

for µ > µK . It can also be shown (see Appendix A) that (74) reduces to the relation

β = µ+
1

2

(
d2β

dµ2

)+

K

(µ− µK)2 (75)

for µ > µK near the vicinity of the embedded shock origin K. Equation (74) provides
a fundamental relation for shock fitting between the shock angle β and the Mach
angle µ along the shock front in the small deflection angle approximation (ε � β).
The constant (d2β/dµ2)+

K , which appears in (74), arises from the singular behaviour
of the embedded shock origin K and is, unfortunately, very difficult to estimate even
for cases where the subcritical flow field in the immediate vicinity of point K can
be calculated very accurately (recall the difficulties associated with the near-corner
solution mentioned in § 3.3). In this paper we will vary this constant in an appropriate
range to see how it affects the shock locations observed in experiments.
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Figure 7. Geometry of an oblique shock wave for global mass conservation through a streamtube
formed by two streamlines S1 and S2 (subscripts a and b denote, respectively, variables just ahead
of and behind the shock front, µ and β are, respectively, the Mach angle and the shock angle at
point 1 where streamline S1 meets the shock front, µ+ ∆µ and β + ∆β are, respectively, the Mach
angle and the shock angle at point 2 where streamline S2 meets the shock front, Aobl is the oblique
area of the streamtube at the shock location, ε is the angle of deflection of streamline S1 by the
shock front and the dashed lines show the corresponding positions of the Mach lines and of the
streamlines for flows without the shock).
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Figure 8. Relation of the shock angle β to the Mach angle µ ahead of the shock (K is the
embedded shock origin and µK = βK is the Mach angle at K).

6. Asymptotic solution of the flow field for supercritical Prandtl–Meyer
flows

We are now ready to construct an algorithm for supercritical Prandtl–Meyer flows
using the asymptotic solution of the condensation rate equation along streamlines. As
mentioned earlier, for regions near the corner where the streamlines do not intersect
the embedded shock front, the subcritical asymptotic solution of Part 1 applies as long
as we are not in the immediate vicinity of the corner. For a discussion of the solution
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Figure 9. Construction of the embedded shock front in the heat addition zones (EF is the
subcritical nucleation wave front and K is the embedded shock origin).

for the flow field in regions where streamlines meet the embedded shock front, first it
is necessary to construct the embedded shock front. The coordinates of the embedded
shock origin K can readily be obtained from the results of § 3. To proceed with the
construction of the shock front by utilizing the shock fitting technique of the previous
section, we first note that the shock front, which originates in the heat addition zones,
may, depending on the amount of heat released, be directed towards the nearly frozen
zones by condensation. In general, a portion KG of the embedded shock lies in the
heat addition zones whereas the portion GL lies in the nearly frozen zones, as shown
in figure 1. Therefore, it is essential to consider the construction of both portions.

6.1. Construction of the embedded shock front in the heat addition zones

For the construction of the shock front in the heat addition zones, we consider the
subcritical asymptotic solution of Part 1 in these zones. Let the embedded shock
origin K lie between the ith and (i+ 1)th shells of the network of characteristics for
the solution algorithm of Part 1 in the heat addition zones, as shown in figure 9, and
let EF denote the subcritical nucleation wave front. Consider the streamline passing
through the embedded shock origin K and let point 1 denote the intersection point
of this streamline with the ith shell and point 2 be next to point 1 on the ith shell
where streamlines intersect the ith shell. Draw the line K3 with shock angle βK = µK
to obtain the initial portion of the shock which intersects the streamline passing
through point 2 at point 3 (see figure 9). Evaluate the flow field at point 3 ahead of
the shock and find the Mach angle µ3a at that point. Now evaluate the shock angle
β3 from (74) of the previous section. Proceed in the same way to arrive eventually
at point K1 of figure 9 where the linear portion of the shock front originating from
K1 can no longer cross a streamline through a point on the ith shell. Now locate
point 5 on the (i − 1)th shell in such a way that the closest lower point to point 5
on the (i − 1)th shell is on the streamline passing through point K1. Construct the
linear portion K14 of the shock front, which intersects the streamline through point
5 at point 4. Evaluate the flow field at point 4 ahead of the shock front, particularly
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the Mach angle µ4a. Then find the shock angle β4 from (74). Continue the above
procedure until point K2 is reached where further construction of the shock front
crosses streamlines passing nearest through points on the (i− 2)th shell. Proceed into
the (i−2)th, (i−3)th, etc. shells until the first shell is met, i.e. the subcritical nucleation
wave front EF, at point G (it is important to mention that sometimes, in regions of
interest, the shock front does not need to meet the subcritical nucleation wave front;
in such a case the shock front KL lies completely in the heat addition zones). The
above algorithm completes the construction of the portion KG of the shock front
in the heat addition zones provided that the embedded shock origin K lies on a
streamline where the subcritical asymptotic solution remains valid, i.e. K does not lie
too close to the corner. This latter case corresponds to strong heat addition near the
corner; therefore, point G would also lie in the immediate vicinity of the corner and,
thereby, of point K. It would then be difficult to predict the solution for the flow field
therein using the subcritical asymptotic solution of Part 1 (see § 3.3). Fortunately, in
such a case, one is usually interested in the solution in regions away from point K
(or point G) where the shock front lies in the nearly frozen zones of Part 1. For these
cases it is sufficient to predict only the coordinates of point G instead of the complete
flow field of the heat addition zones in the immediate vicinity of the corner. In what
follows we employ a shooting method based on the near-corner solution of § 3.3 for
the prediction of the coordinates of point G. Assuming that the embedded shock
origin lies on a characteristic given by (17), we can approximate the shock front by
the parabola

y = D(x− xK)2 + BK(x− xK) + yK (76)

where the coordinates (xK, yK) of the embedded shock origin K are given by (30) and
(31) and where BK is defined by

BK = 2A(mK)[xK − x`(mK)] + mK (77)

with mK given by (29). Since G lies both on the shock front KG and on the subcritical
nucleation wave front EF, it follows that the coordinates (xG, yG) of point G satisfy
the relations

yG = D [x`(mG)− xK]2 + BK[x`(mG)− xK] + yK (78)

and

yG = mGxG = mGx`(mG) (79)

where mG denotes the slope of the Mach line emanating from the corner on which G
lies and where xG = x`(mG). Equations (78) and (79) provide two equations for the
three unknowns yG, mG and D. The third relation between these unknowns follows
by satisfying (74) for shock fitting at G which yields

tan βG =
exp

[
tan µK

(
d2β/dµ2

)+

K
(ln (MG sin µK) )2 /2

]
{
M2

G − exp
[
tan µK

(
d2β/dµ2

)+

K
(ln (MG sin µK))2

]}1/2
(80)

where

MG = M(mG) =

(
1 +

(
γ + 1

γ − 1

)
tan2

{(
γ − 1

γ + 1

)1/2 [
ω(M1) + tan−1 1

mG

]})1/2

(81)

with ω(M1) denoting the Prandtl–Meyer function evaluated at the oncoming flow
Mach number M1. Equation (81) corresponds to the solution of the Mach number
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Figure 10. Estimation of point G, where the embedded shock front meets the subcritical nucleation
wave front (µG and βG are, respectively, the Mach angle and the shock angle at G, ψG is the
inclination angle of the isentropic Mach line through G and α̂G is the inclination angle of the
tangent to the shock front at G).

evaluated at point G as an explicit function of the similarity variable mG worked out
in detail in Appendix B (for the first time to the best knowledge of the authors). On
the other hand, it follows from the geometry of figure 10 that

α̂G − ψG = βG − µG (82)

where tanψG = mG and α̂G is the angle between the line tangent to the shock front
and the x-axis. From (78) and (79) we obtain

tan α̂G ≡ f(mG) = 2
mG x`(mG)− yK
x`(mG)− xK − BK. (83)

By taking the tangent of both sides of (82) and by utilizing (83), one arrives at

tan βG =
[f(mG)− mG](M2

G − 1)1/2 + mG f(mG) + 1

[1 + mG f(mG)](M2
G − 1)1/2 + mG − f(mG)

(84)

where f(mG) is given by (83) and MG = M(mG) is given by (81). Equations (80) and
(84) provide an equation for mG for a given value of (d2β/dµ2)+

K . The coordinates of
the point G are then given by

xG = x`(mG) and yG = mG x`(mG). (85)

The portion KG of the embedded shock front lying in the heat addition zones is
given by (76) where the constant D can now be evaluated using (78) and (85).

6.2. Construction of the embedded shock front in the nearly frozen zones

When the shock front meets the subcritical nucleation front at point G, it extends
nearly to the frozen zones. A method for obtaining the coordinates of the point G,
when it lies close to the embedded shock origin K, has already been discussed in the
previous section. Here we show that the construction of the portion GL of the shock
front in the nearly frozen zones can be performed very accurately. In the nearly frozen
zones the relation between the flow Mach number and the similarity variable m, i.e.
the slope of a Mach line emanating from the corner, can be taken as the isentropic
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relation

M = M(m)

=

(
1 +

(
γ + 1

γ − 1

)
tan2

{(
γ − 1

γ + 1

)1/2 [
ω(M1) + tan−1 1

m

]})1/2

(86)

for 0 < tan−1 (1/m) < π as worked out in detail in Appendix B (this relation
follows from the solution of the Riemann invariant equation ω(M) − θ = ω(M1)
with ω denoting the classical Prandtl–Meyer function. To the best of our knowledge
this explicit solution which relates the isentropic Mach number M to the similarity
variable m is not available in the literature). It follows from the geometry of figure
11, where the portion GL of the shock front lies in the nearly frozen zones, that

dy

dx
= tan (β − θ) =

tan β − tan θ

1 + (tan β) tan θ
(87)

where

tan β = f1(m)

=
exp

[
tan µK

(
d2β/dµ2

)+

K
(ln (M(m) sin µK))2 /2

]
{
M2(m)− exp

[
tan µK

(
d2β/dµ2

)+

K
(ln (M(m) sin µK))2

]}1/2
(88)

and

tan θ = f2(m) = tan [ω{M(m)} − ω(M1)] (89)

with the similarity variable m given by m = y/x. Consequently, we obtain the
homogeneous first-order differential equation

dy

dx
= F

(y
x

)
(90)

for the shock front where the function F(m) is defined by

F(m) =
f1(m)− f2(m)

1 + f1(m) f2(m)
(91)

with f1(m) and f2(m) given, respectively, by (88) and (89). The solution to the initial
value problem with initial values x = xG = x(mG) and y = yG = mG xG yields the
parametric equations for the shock front GL as

x = x(m) = xG exp

[∫ m

mG

dt

H(t)

]
(92)

and

y = y(m) = mxG exp

[∫ m

mG

dt

H(t)

]
(93)

for mG < m < ∞ with the function H(m) defined by

H(m) = F(m)− m. (94)

Equations (92) and (93) yield the location of the embedded shock front in the nearly
frozen zones on any Mach line with slope m = tanψ and require only the evaluation
of the integral in the argument of the exponential function, which has to be carried
out numerically. In practice it would be more convenient to solve the initial value
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Figure 11. Construction of the portion GL of the embedded shock front in the nearly frozen zones
(ψ is the angle of inclination of an isentropic Mach line, β is the shock angle and θ is the isentropic
flow angle).

problem to the differential equation (87) using standard numerical techniques. For
example, a simple Euler algorithm will yield the coordinates of the shock front on a
Mach line with slope mi as

xi =
tan(βi−1 − θi−1)− mi−1

tan(βi−1 − θi−1)− mi xi−1, i = 1, 2, 3, . . . , (95)

and

yi = mixi, i = 1, 2, 3, . . . , (96)

starting with the Mach line through point G with initial value x0 = xG at m0 = mG
and proceeding for arbitrarily small separation of slopes mi − mi−1, i = 1, 2, . . . , (see
figure 11).

6.3. Construction of the network of characteristics downstream of the shock and
supercritical flow solution

Having completed the construction of the embedded shock front KL, with portion
KG lying in the heat addition zones for shocks which extend to the nearly frozen
zones, we first notice that the subcritical asymptotic solution of Part 1 applies along
streamlines upstream of the shock front KL. The flow variables just behind the shock
front then follow from the oblique shock relations (43)–(52). The construction of the
network of characteristics downstream of the shock front KL and the flow solution
therein need a separate consideration. We first consider the partition of points where
streamlines intersect the shock front KL constructed by the method discussed in
the previous sections. We order this partition of points by numbering them in the
direction L to K as shown in figure 12. At this stage it is essential to distinguish
between the asymptotic solutions of the condensation rate equation along the different
classes of streamlines shown in figures 1 and 12. Naturally a considerable amount of
heat is released along streamlines downstream of the embedded oblique shock front.
For this reason it is essential to consider the characteristic form of the equations of
motion in the heat addition zones:

ρu du+ dp = 0, (97)
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h+ 1
2
u2 = cpm T − µm

µv
L(T ) g + 1

2
u2 = cpm + 1

2
u2

1, (98)

u dg − $ ds = 0 (99)

on streamlines, and √
u2

a2
f

− 1 dp± ρu2 dθ − hg

hρ
af$

(
dη̄
dζ̄

)
= 0 (100)

on the characteristic lines
dn

ds
= ∓ 1√

(u2/a2
f)− 1

, (101)

together with the thermal equation of state (5) valid everywhere (for details and
definitions see (38)–(48) of Part 1; also, note that we have, respectively, used the
symbols η̄ and ζ̄ instead of η and ζ of Part 1 to avoid any confusion with the
notation of § 5 of this paper). Consider the streamline through point 2, just behind
the embedded oblique shock deflected by an angle ε2 given by the shock relations, and
the η̄-characteristic through point 1 just behind the shock front as shown in figure 12.
Let point 4 be their intersection point and 4–1′ be the ζ̄-characteristic through point
4 intersecting the shock front at point 1′ (see figure 12). Our aim is to locate points 4
and 1′, and to find the flow field at point 4 from the flow field at points 1, 2 and 1′
just behind the oblique shock front determined by the subcritical asymptotic solution
of Part 1, the oblique shock relations and the shock construction discussed above. We
first locate the coordinates of point 4 from (101) written for the characteristic line 1–4
and streamline 2–4 using the slopes at the initial shock front on the average. Point
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1′ is then determined from (101) for the 1′–4 characteristic using the slope at point
1′ at the shock front as the average value for the slope (we can correct iteratively
for the average value of the slopes after obtaining the flow field at point 4). We then
write (97)–(99) on the streamline 2–4 through point 2, equation (100) with the (−)
sign chosen along the η̄-characteristic 1–4 and with the (+) sign chosen along the ζ̄-
characteristic 1′–4 together with the thermal equation of state (5) and the asymptotic
solution along the streamline of appropriate class (class e in this case) downstream
of the embedded oblique shock, as discussed in § 2, and solve for the flow field at
point 4. We repeat this procedure for the streamline through point 3 at the shock
front and for the η̄-characteristic through point 2 to locate point 5 and the flow field
therein. We continue this procedure along the shock front in the direction from L to
K employing each time the asymptotic solution along the streamline of appropriate
class downstream of the shock. We, thereby, obtain the points 4, 5, etc. as shown in
figure 12, which we call the second (i = 2) shell, and the flow field at these points (by
construction the first, i = 1, shell is the shock front and the flow field therein is known
from the upstream solution, the oblique shock relations and shock construction). We
repeat this procedure to obtain the third (i = 3), fourth (i = 4), etc. shells and the
flow field at points constituting these shells (typical characteristic lines emerging from
the ith shell for the construction of the next shell by the above procedure are shown
in figure 12). We construct as many shells as necessary to approach equilibrium flow
conditions in the droplet growth zones along streamlines downstream of the shock.
Consequently, we obtain the supercritical flow field in regions of interest.

7. Condensation model and results
We are now in a position to calculate supercritical Prandtl–Meyer flow fields

with homogeneous condensation by the method discussed above. We use the same
condensation model as in Part 1, i.e. the classical nucleation rate equation and the
Hertz–Knudsen droplet growth law. This model, with the poorly known surface
tension and accommodation coefficients fitted to the experiments of Peters & Paikert
(1989) by Schnerr & Dohrmann (1990), has proved successful for moist air expansions
for a number of problems investigated (e.g. see Schnerr 1989; Delale et al. 1993a, b;
Adam & Schnerr 1997) provided that the expansion rate is smaller than 3 Kµ s−1

(see e.g. Delale & Schnerr 1996). Since this value for the expansion rate is exceeded
on streamlines near the corner (the expansion rate at the corner is infinite), this
condensation model is not valid in the neighbourhood of the corner (in this case
unsteady effects of nucleation have to be considered). Consequently, we should
employ this model only for computations in regions sufficiently far from the corner.
The thermodynamic functions Σ, B, Ω and r∗ together with the nucleation and
droplet growth parameters K and λ, which appear in the normalized condensation
rate equation (7), for this model are already given in Part 1.

Using the condensation model discussed above, an algorithm for supercritical
Prandtl–Meyer flows can be developed for moist air expansions. The first step in the
algorithm is the evaluation of the embedded shock origin by the shock formation
theory of § 3. Here one has to distinguish between the two cases discussed in § 3
(for supercritical flows with appreciable heat addition, which will also be assumed
here, the embedded shock origin lies on a characteristic emanating from the corner).
Once the embedded shock origin is found, the embedded shock front is located
utilizing the shock fitting technique of § 5 and the constructions given in §§ 6.1 and
6.2 together with an appropriate value for the constant (d2β/dµ2)+

K . The asymptotic
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solution of Part 1 would then be valid along streamlines upstream of the oblique
shock front and the application of the oblique shock relations of § 4 would yield the
flow field just behind the embedded shock front. The asymptotic solution downstream
of the embedded shock follows the guidelines of § 6.3. The most crucial point in this
algorithm is the choice of the constant (d2β/dµ2)+

K . For this reason we propose
a compatibility condition between the shock location and the value of the frozen
condensate mass fraction g∗ at the shock front, which needs to be satisfied at
every point along the shock front. This compatibility condition can be stated as
follows: The frozen condensate mass fraction g∗ at any point on the embedded shock
front should be such that a substantial amount of heat must be released along streamlines
in zones just downstream of the embedded shock front. If this compatibility condition
is violated anywhere on the shock front, we would conclude that the value chosen
for the constant (d2β/dµ2)+

K is not the appropriate value for shock fitting. The above
compatibility condition can also be used to determine to what extent supercritical
Prandtl–Meyer flows can be achieved in experiments designed for corner expansion
flows with homogeneous condensation, recalling the difficulties in achieving such
flows as discussed in Part 1. In this case we choose the constant (d2β/dµ2)+

K so
that experimental onset conditions lie on the shock front embedded in the nearly
frozen zones. We evaluate the flow field using the algorithm constructed above for
supercritical Prandtl–Meyer flows. We then check to what extent the compatibility
condition is satisfied along the shock front.

We can now apply the above algorithm to the experiments of Smith (1971) for
moist air expansions, which were shown to be supercritical in Part 1. Figure 13(a)
shows the embedded shock origin K and the position of the embedded shock front
KL for (d2β/dµ2)+

K = 0.01 together with the nucleation wave front CF (obtained by
extrapolation from the subcritical algorithm of Part 1) using the above supercritical
algorithm for the experiments of Smith (1971) for supply temperature T ′0 = 284 K,
supply specific humidity ω0 = 6.8 g kg−1 and supply relative humidity ϕ0 = 0.41.
Figure 13(b) shows the same characteristics for the experiments of Smith (1971),
but with (d2β/dµ2)+

K = 1.8 for supply temperature T ′0 = 284 K, supply specific
humidity ω0 = 6.4 g kg−1 and supply relative humidity ϕ0 = 0.69. Comparison of
these figures shows that the increase in relative humidity shifts the embedded shock
origin K, and consequently point G, closer to the corner, signifying stronger heat
release by condensation. Figure 14(a) shows the positions of the shock front KL1 for
(d2β/dµ2)+

K = 0.01 and of KL2 for (d2β/dµ2)+
K = 1.0 together with the subcritical

nucleation wave front CF for the experiments of Smith for the supply conditions
stated in figure 13(a). In this case no significant change in the location of the
point G is observed for the indicated values of the constant (d2β/dµ2)+

K . The best
agreement with the experiments seems to be achieved by the curve KL1 with a value
of (d2β/dµ2)+

K = 0.01.
Figure 14(b) shows the positions of the shock front KL1 for (d2β/dµ2)+

K = 1.8 and
of KL2 for (d2β/dµ2)+

K = 1.0 together with the subcritical nucleation wave front CF
for the experiments of Smith for the supply conditions in figure 13(b). In this case
one can observe a shift in the location of point G for different values of (d2β/dµ2)+

K

(points G1 and G2 in the figure). The embedded shock front KL1 obtained with
(d2β/dµ2)+

K = 1.8 seems to yield the best agreement with the experiments of Smith
in this case. The remarkably good agreement of the embedded shock fronts KL1 in
figures 14(a) and 14(b) obtained by the shock fitting technique of § 5 demonstrates the
success of this technique. From the construction of the embedded shock fronts KL1

in figures 14(a) and 14(b), we find that the condensate mass fraction g∗ varies slowly
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Figure 13. (a) The initial formation of the embedded shock front KGL, for (d2β/dµ2)+
K = 0.01, and

the subcritical nucleation wave front CGF for the experiments of Smith (1971) for nozzle supply
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fraction g along a streamline at initial distance D′ = 2.064 cm from the corner for the experiments
of Smith (1971) for nozzle supply temperature T ′0 = 284 K, supply specific humidity ω0 = 6.8 g kg−1

and supply relative humidity ϕ0 = 0.41.

along the shock fronts with values between 1.3× 10−6 and 8.5× 10−6 along the shock
front GL1 of figure 14(a) and with values between 1.0 × 10−7 and 2.5 × 10−7 along
the shock front G1L1 of figure 14(b), with the greater value as we get closer to the
corner along the shock fronts. From the oblique shock relations of § 4, we find that
the deflection angle ε (in radians) is of O(10−4) along the shock front GL1 of figure
14(a) and of O(10−2) along the shock front G1L1 of figure 14(b), verifying the validity
of the small deflection angle approximation used in § 5. The use of the oblique shock
relations also shows that both shock fronts are weak, demonstrating the alternative
possibility of employing the weak shock approximation of Whitham (1956, 1974)
(e.g. the change in the flow Mach number ∆M across the shock fronts GL1 of figure
14(a) and G1L1 of figure 14(b) is, respectively, of O(10−4) and of O(10−2)). These
quantitative results are also in agreement with those of the qualitative theory by
Delale & van Dongen (1998) that only weak embedded shock waves can be observed
in Prandtl–Meyer flows with non-equilibrium condensation.

We now consider the flow field downstream of the embedded shock front KL1 (GL1

in figure 14(a) and G1L1 in figure 14(b)) using the supercritical asymptotic algorithm
discussed in detail in § 6.3. We first discuss the supercritical solution downstream of
the embedded shock GL1 of figure 14(a) (with (d2β/dµ2)+

K chosen such that it almost
coincides with the onset conditions in the experiments of Smith). Figure 15 shows
the distributions of the pressure p′, the nucleation rate J ′ and the condensate mass
fraction g along a streamline at initial distance D′ = 2.064 cm from the corner for
the supply conditions given in figure 13(a) using the supercritical asymptotic solution
downstream of the embedded shock front GL1 of figure 14(a). The corresponding
distributions for the flow Mach number Mg and for the temperature T ′ along the
same streamline and for the same supply conditions are exhibited in figure 16. The
results imply that a delay in appreciable latent heat addition occurs downstream of
the embedded shock front, demonstrating the fact that the compatibility condition,
mentioned above, between the value of the condensate mass fraction g∗ (here of
O(10−6)) and the embedded shock location is not satisfactorily reached for this case.
Since the embedded shock front, fitted by the method of § 5, is at the experimentally



260 C. F. Delale and D. G. Crighton

250

240

230

220

210

200

T
′ (

K
)

1.5

1.4

1.3

1.2

1.1

1.0

M
g

Mg

0 0.4 0.8 1.2 1.6 2.0

Shock
location

T ′

x ′ (cm)

Figure 16. The distributions of the flow Mach number Mg and the temperature T ′ along a
streamline with initial distance D′ = 2.064 cm from the corner for the experiments of Smith (1971)
for the supply conditions of figure 15.

observed location, we deduce that the value of the condensate mass fraction g∗ at the
shock location (obtained by the subcritical algorithm of Part 1) is not sufficiently large
for considerable heat to be released in zones immediately following the shock front.

This incompatibility between g∗ and the embedded shock location originates from
the use of uniform velocity and non-nucleating conditions at the throat for the
oncoming flow in Prandtl–Meyer flows in contrast to the nozzle flow conditions
at the throat in the experiments of Smith (1971), a fact that has already been
discussed in Part 1. Consequently, the flow field along the streamline at initial distance
D′ = 2.064 cm from the corner for the supply conditions given in figure 13(a) for the
experiments of Smith (1971) resembles more closely that of flows in ducts and nozzles
(see e.g. Schnerr 1987; Delale et al. 1993b) than that of supercritical Prandtl–Meyer
flows exhibited in figures 15 and 16. Figure 17 shows the distributions of the pressure
p′, the nucleation rate J ′ and the condensate mass fraction g along a streamline for
the same supply conditions as figure 15, but with initial distance D′ = 1.066 cm from
the corner. The corresponding distributions for the flow Mach number Mg and for
the temperature T ′ along the same streamline and for the same supply conditions
are exhibited in figure 18. The agreement between g∗ (now of O(10−5)) and the shock
location is better now despite the delay (here smaller) in the heat release downstream
of the embedded shock front. Therefore, the flow field for the supply conditions given
in figure 13 in the experiments of Smith approaches that for supercritical Prandtl–
Meyer flows only along those streamlines lying sufficiently close to the corner. The
flow deviates from the supercritical Prandtl–Meyer flows along streamlines far from
the corner. The situation becomes worse for the supply conditions of figure 13(b)
in the experiments of Smith (1971). In this case the flow is more or less frozen for
long distances along streamlines (except for those very near the corner where it is
difficult to obtain the solution) downstream of the shock front G1 L1 violating the
compatibility condition. This shock wave lies very close to the throat of the nozzle
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in Smith’s experiments and seems to represent the strong shock wave encountered in
supercritical nozzle or duct flows with a downstream subsonic field (for experimental
evidence of this in corner expansion flows, see Frank 1985).

8. Conclusions
Prandtl–Meyer flows with embedded oblique shock waves (supercritical flows) due

to excessive heat release from condensation are considered using the asymptotic
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solution of the condensation rate equation along streamlines. The necessary and
sufficient conditions for the existence of embedded shock waves are given in the
parabolic approximation of the equations of characteristics in the heat addition
zones. The embedded shock origin is then located by the envelope construction of
the family of characteristics in this approximation. A shock fitting technique for
embedded oblique shock waves, containing a constant determined by a compatibility
condition, is introduced in the small deflection angle approximation. Consequently,
the law of deflection of a streamline through an embedded oblique shock wave is
established in the same approximation. An algorithm for the flow field downstream of
the embedded oblique shock wave in supercritical Prandtl–Meyer flows is constructed
using the characteristic form of the equations of motion together with the asymptotic
solution of the condensation rate equation along streamlines. The theory is then
applied to the corner expansion flows in the experiments of Smith (1971), which have
already been shown to be supercritical in Part 1. The results show that embedded
shock waves close to the throat of the nozzle, where the corner is located, are
strong shock waves with a subsonic flow field downstream, violating the compatibility
condition between the embedded shock location and the value of the condensate mass
fraction therein. Embedded shock waves considerably downstream of the throat and
near the corner with higher Mach numbers, for which the compatibility between the
shock location and the condensate mass fraction therein is satisfied, show features that
are more or less characteristic of supercritical Prandtl–Meyer flows with homogeneous
condensation. These features can be summarized as:

(a) subcritical flows can be observed only in regions in the immediate neighbourhood
of the corner;

(b) the embedded shock origin, generally, lies on a characteristic emanating from
the corner;

(c) the embedded shock waves observed are oblique and weak with small deflection
angles, verifying the small deflection approximation for shock fitting;

(d) the embedded shock front is concave with respect to the oncoming flow;

(e) an increase in the supply relative humidity, with the rest of the supply conditions
held fixed, shifts the embedded shock origin closer to the corner and the embedded
shock front further upstream in the expansion fan;

(f) the flow field along streamlines upstream of the embedded shock front is nearly
frozen, except within the thin onset zone, and considerable heat addition proceeds
immediately along streamlines downstream of the shock front; and

(g) the overall thickness of the heat addition zones along streamlines downstream
of the embedded shock front increases as the initial distance of the streamlines from
the corner is increased.

Supercritical Prandtl–Meyer flows with homogeneous condensation seem difficult to
be realized in experiments; therefore, they usually occur locally, as in the experiments
of Smith (1971), where the asymptotic theory developed above yields satisfactory
results.
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Appendix A. Verification of (74) near the embedded shock origin
Consider the relation between the shock angle β and the Mach angle µ in the

immediate neighbourhood of the embedded shock origin. At the embedded shock
origin K, we have βK = µK and (dβ/dµ)K = 1. We also have β = µ for µ 6 µK on
the characteristic line where the embedded shock origin K is located. Combining this
with (75) for µ > µK we can write

β = µ+
1

2

(
d2β

dµ2

)+

K

(µ− µK)2 Θ(µ− µK) (A 1)

for sufficiently small (µ− µK) where Θ denotes the Heaviside unit step function. We
now verify this law using (74). To do so, we evaluate the left-hand side of (74) using
relation (A 1) and show that this is the same as the right-hand side of (74) in the
vicinity of the embedded shock origin K. On employing relation (A 1) the left-hand
side of (74) becomes

L.H.S. ≡ sin β

sin µ
= 1 + (cot µ) k2 + O(k4) (A 2)

for µ > µK where k is a small parameter (k � 1) defined by

k ≡
[

1

2

(
d2β

dµ2

)+

K

]1/2

(µ− µK) > 0. (A 3)

By expanding cot µ for µ > µK in powers of (µ− µK) we obtain

cot µ = cot µK −
[

2

(d2β/dµ2)+
K

]1/2

(1 + cot2 µK) k + O(k2). (A 4)

Using this equation together with (A 2) we arrive at

L.H.S. = 1 + (cot µK)k2 −
[

2

(d2β/dµ2)+
K

]1/2

(1 + cot2 µK) k3 + O(k4) (A 5)

for µ > µK . Now we evaluate the right-hand side of (74) for µ > µK . By expanding in
powers of (µ− µK) one can show that

sin µ

sin µK
= 1 +

[
2

(d2β/dµ2)+
K

]1/2

(cot µK)k − 1

(d2β/dµ2)+
K

k2 + O(k3) (A 6)

and

ln
sin µ

sin µK
=

[
2

(d2β/dµ2)+
K

]1/2

(cot µK) k − (1 + cot2 µK)

(d2β/dµ2)+
K

k2 + O(k3). (A 7)

We can now write

tan µK
2

(
d2β

dµ2

)+

K

(
ln

sin µ

sin µK

)2

= (cot µK) k2 −
[

2

(d2β/dµ2)+
K

]1/2

(1 + cot2 µK) k3 + O(k4). (A 8)
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Taking the exponential of (A 8) we obtain for µ > µK the right-hand side of (74) as

R.H.S. = exp

[
tan µK

2

(
d2β

dµ2

)+

K

(
ln

sin µ

sin µK

)2
]

= 1 + (cot µK) k2 −
[

2

(d2β/dµ2)+
K

]1/2

(1 + cot2 µK) k3 + O(k4). (A 9)

The left-hand side evaluated using (A 1) agrees with the right-hand side for suffi-
ciently small k up to O(k4) verifying that (74) yields precisely the same results as (A 1)
near the embedded shock origin K.

Appendix B. Solution of the Riemann invariant for the Mach number as a
function of the similarity variable in isentropic Prandtl–Meyer flows

Consider the Riemann invariant

θ = µ− ψ = ω(M)− ω(M1) (B 1)

valid everywhere in the expansion fan of isentropic Prandtl–Meyer flows where ω(M)
denotes the classical Prandtl–Meyer function defined by

ω(M) =

(
γ + 1

γ − 1

)1/2

tan−1

[
(γ − 1)

(γ + 1)
(M2 − 1)

]1/2

− tan−1(M2 − 1)1/2 (B 2)

(for notation and details see Part 1). By taking the tangent of both sides of (B 1), one
can write

1− mv
v + m

= tan [κ(v)− tan−1 v] (B 3)

where m = tan ψ is the similarity variable that denotes the slope of any particular
Mach line in the expansion fan of isentropic Prandtl–Meyer flows and where v and
κ(v) are defined by

v = (M2 − 1)1/2 (B 4)

and

κ(v) =

(
γ + 1

γ − 1

)1/2

tan−1

[(
γ − 1

γ + 1

)1/2

v

]
− ω(M1). (B 5)

By expanding the tangent in (B 3), one arrives at the relation

tan κ(v] = 1/m. (B 6)

Now by solving (B 5) and (B 6) for v as a function of the similarity variable m and
using (B 4), we obtain the remarkable result

M = M(m) =

(
1 +

(
γ + 1

γ − 1

)
tan2

{(
γ − 1

γ + 1

)1/2 [
ω(M1) + tan−1 1/m

]})1/2

(B 7)

for 0 < tan−1 (1/m) < π. Equation (B 7) yields explicitly the isentropic Mach number
on any Mach line with slope m in Prandtl–Meyer flows. The rest of the flow variables
on the Mach line with slope m then follow from their relations to the Mach number.
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